The petri dish evolves...cells grow faster in some instances and have a more realistic shape and size...BD

PROVIDENCE, R.I. [Brown University] A team of Brown University biomedical engineers has invented a 3-D Petri dish that can grow cells in three dimensions, a method that promises to quickly and cheaply produce more realistic cells for drug development and tissue transplantation. The technique employs a new dish cleverly crafted from a sugary substance long used in science laboratories that allows cells to self-assemble naturally and form microtissues. A description of how the 3-D dish works appears in the journal Tissue Engineering. Its a new technology with a lot of promise to improve biomedical research, said Jeffrey Morgan, a Brown professor of medical science and engineering.

The clear, rubbery dish is the size of a silver dollar. It is made from a water-based gel made of agarose, a complex carbohydrate long used in molecular biology. This gel has a few benefits. It is porous, allowing nutrients and waste to circulate. And it is non-adhesive, so cells won’t stick to it. At the bottom of the dish sit 820 tiny recesses or wells. When cells are added to the dish –about 1 million at a time – roughly 1,000 sink to the bottom of each well and form a pile. These close quarters allow cells to self-assemble, or form natural cell-to-cell connections, a process not possible in traditional Petri dishes.

Brown scientists take the petri dish to new dimensions

0 comments :

Post a Comment

 
Top
Google Analytics Alternative